
7 		
Name:		

__ Per: _

Topic 3 Test Review

Answer each question below. Be sure to show all work and clearly indicate any construction markings where necessary.

_____1) Which of the following constructions are illustrated by the diagram to the left?

- (1) Angle bisector of ∠ABD
- (2) Perpendicular bisector of \overline{AB}
- (3) Midpoint of \overline{CD}
- (4) Perpendicular bisector of \overline{CD}

____ 2) Joey sketches a triangle inside of a circle so that each of its vertices touch 3 distinct points on the circle. Which of the following constructions can he do to the triangle to determine the center of the circle?

- (1) Construct the three angle bisectors of the triangle
- (2) Construct the three perpendicular bisectors of the triangle
- (3) Construct the diameter of the circle
- (4) Neither

Match each of the following properties to their proper example:

3)	Symmetric	Property
----	-----------	----------

____ 4) Reflexive Property

____ 5) Transitive Property

____ 6) Addition Property of Equality

____ 7) Subtraction Property of Equality

_____ 8) Multiplication Property of Equality

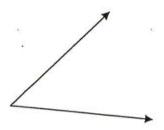
_____ 9) Division Property of Equality

____ 10) Substitution Property

$$AB = AB$$

b. If
$$AB = CD$$
, then $AB + BC = BC + CD$

d. If
$$m\angle A + m\angle B = 90$$
 and $m\angle A = m\angle C$,
then $m\angle B + m\angle C = 90$.

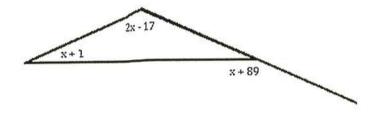

e. If
$$AB = CD$$
 then $CD = AB$.

f. If
$$AB = BC$$
, then $2AB = 2BC$.

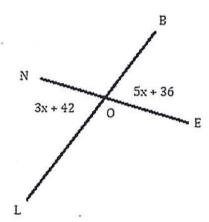
g. If
$$m \angle A + m \angle B = m \angle A + m \angle C$$
, then $m \angle B = m \angle C$

h. If AB = BC, then
$$\frac{AB}{3} = \frac{BC}{3}$$

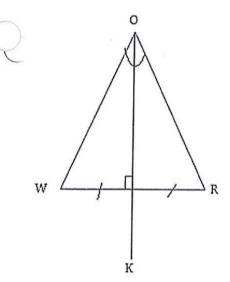
11) Construct the angle bisector of the angle below.



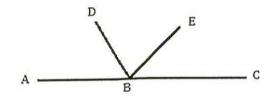
12) Construct a 60° angle at point P below.

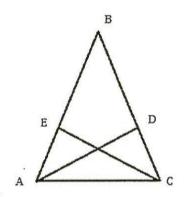


13) The angles of a triangle can be represented by 2x + 10, x + 20 and 3x. Determine the value of x. Classify the triangle by angles and sides.

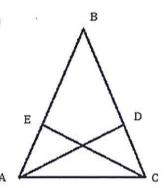

14) Find the value of x below:

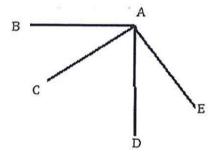
15) Find m∠NOL below


16) State 3 facts about \overline{KO} below based on the given markings.

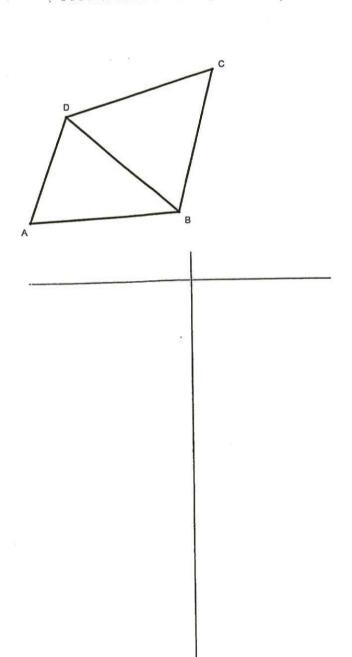

More Geometric Proofs

Use a formal proof to answer each of the following question below. Be sure to clearly identify your statements and reasons.

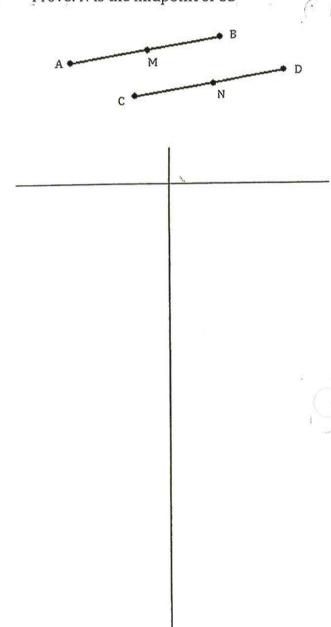

 β 1) Given: \overline{ABC} , m \angle ABE = m \angle CBD Prove: m \angle ABD = m \angle CBE


2) Given: $\overline{CD} \perp \overline{AB}$ and $\overline{AD} \perp \overline{BC}$ Prove: $\angle ADB \cong \angle CEB$

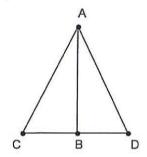
3) Given: $\overline{AB} \cong \overline{CB}$ and $\overline{EB} \cong \overline{DB}$ Prove: $\overline{AE} \cong \overline{CD}$



4) Given: $\overline{AD} \perp \overline{AB}$ and $\overline{AE} \perp \overline{AC}$ Prove: m \angle BAD = m \angle EAC

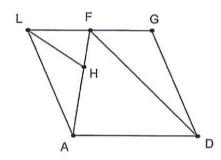

5) Given: $\triangle ABD$ is isosceles with vertex at B and $\overline{AB} \cong \overline{BC}$

Prove: ΔCBD is isosceles

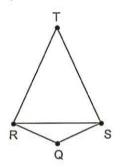


6) Given: M is the midpoint of \overline{AB} , AM = CN, and BM = DN

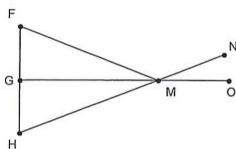
Prove: N is the midpoint of $\overline{\textit{CD}}$


7)

Given: In $\triangle ABD$, \overline{AB} bisects \overline{CD}


Prove: $\overline{CB} \cong \overline{BD}$

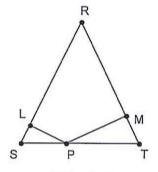
8)



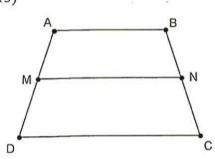
Given: In parallelogram GLAD

 \overline{HL} bisects $\angle GLA$ Prove: $\angle FLH \cong \angle ALH$ Given: In $\triangle RST$, $\overline{RS} \perp \overline{ST}$ Prove: $\triangle RST$ is a right triangle. 10)

Given: $\overline{TR} \perp \overline{RQ}$, $\overline{TS} \perp \overline{SQ}$ **Prove:** $\angle TRQ \cong \angle TSQ$ 11)

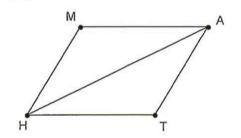


Given: \overline{GO} bisects $\angle FMH$

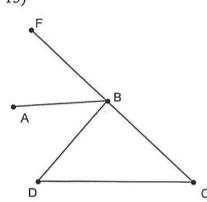

 $\overline{\textit{GMO}}$ and $\overline{\textit{HMN}}$ intersect at M

Prove: $\angle FMG \cong \angle NMO$

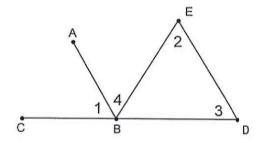
12)



Given: $\overline{PL} \perp \overline{RS}$, $\overline{PM} \perp \overline{RT}$ Prove: $m\angle PLS = m\angle PMT$


Given: $\angle 1 \cong \angle 3$, $\overline{MN} \parallel \overline{DC}$ Prove: $\angle 2 \cong \angle 4$

14)


Given: $\overline{MA} \parallel \overline{TH}$

Prove: $\angle r \cong \angle s$

Given: \overrightarrow{BA} bisects $\angle FBD$, $m\angle ABD = m\angle BDC$

a) Prove: $m\angle ABF = m\angle BDC$ b) If $m\angle ABD = 3x + 20$ and $m\angle BDC = x + 40$, find $m\angle ABF$ 16)

If \overrightarrow{BA} bisects $\angle CBE$, $\angle 1 \cong \angle 3$, and $\angle 2 \cong \angle 4$, then $\angle 3 \cong \angle 2$

.