Name: KEY

Date:

1. If the vertices of $\triangle ABC$ are A(-2,4), B(-2,8), and C(-5,6), then $\triangle ABC$ is classified as

See Graph

- (1) right
- (2) scalene
- (3) isosceles
- (4) equilateral

$$dBC = 3^{2} + 2^{2} \qquad dAC = 3^{2} + 2^{2}$$

$$= 9 + 4 \qquad = 9 + 4$$

$$= \sqrt{13} \qquad = \sqrt{13}$$

2. In slope-intercept form, what is the equation of the line parallel to the line 3x + 4y = 5 and having the same x-intercept as 5x + 6y = 40?

$$3X+4Y=5$$

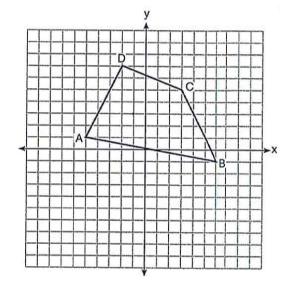
$$4y=-3X+5$$

$$4(3) y=-\frac{3}{4}x+6$$

$$Y=-\frac{3}{4}X+\frac{5}{4}$$

$$Y=-\frac{3}{4}X+\frac{5}{4}$$

$$Y=-\frac{3}{4}X+\frac{5}{4}$$


3. Point M is the midpoint of \overline{AB} . If the coordinates of A are (-3,6) and the coordinates of M are (-5,2), what are the coordinates of B?

- (1) (1,2)
- (2) (7,10)
- (3) (-4, 4)
- (4) (-7, -2)

$$-\frac{31}{2} = \frac{-5}{1}$$

- -3+x=-10
 - X = 7

4. In the diagram below, quadrilateral *ABCD* has vertices A(-5, 1), B(6, -1), C(3, 5), and D(-2, 7).

What are the coordinates of the midpoint of diagonal \overline{AC} ?

- (1) (-1,3)
- (2) (1,3)
- (3) (1,4)
- (4) (2,3)

Consider the following four linear equations:

$$3y = 4x + 3$$
 I. $-3x + 4y = 8$ $y = \frac{3}{4}x + 2$
 $y = \frac{4}{3}x + 1$ II. $-4x + 3y = 3$
III. $6x + 8y = 10 \rightarrow 8y = -6x + 10$
 $y = -\frac{3}{4}x + \frac{5}{4}$
 $y = \frac{3}{4}x - 5 \rightarrow 10$
 $y = -\frac{3}{4}x + \frac{5}{4}$

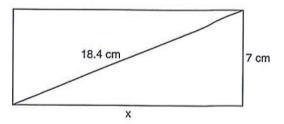
$$Y = \frac{3}{4}x - 5$$
 IV. $-\frac{3}{4}x + y = -5$

Which of the above lines are perpendicular?

(1) I and II (2) II and III (3) I and IV (4) III and IV

What is the length of \overline{RS} with R(-2,3)6. and S(4, 5)?

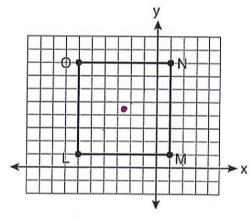
(1)
$$2\sqrt{2}$$


$$(3) \ 2\sqrt{10}$$

(4)
$$2\sqrt{17}$$

$$\frac{-2-4)^{2}+(3-5)^{2}}{(-6)^{2}+(-2)^{2}}$$

$$\frac{36+4}{4\cdot 10}$$


7. The rectangle shown below has a diagonal of 18.4cm and a width of 7 cm.

To the nearest centimeter, what is the length, x, of the rectangle?

(1) 11
$$(2)$$
 17/ (3) 20 (4) 25
 $X^2 + 7^2 = 18.4^2$
 $X^2 + 49 = 338.56$
 $X^2 = 289.56$

8. Square LMNO is shown in the diagram below.

What are the coordinates of the midpoint of diagonal \overline{LN} ?

(1)
$$(4\frac{1}{2}, -2\frac{1}{2})$$
 (2) $(-3\frac{1}{2}, 3\frac{1}{2})$ (3) $(-2\frac{1}{2}, 3\frac{1}{2})$ (4) $(-2\frac{1}{2}, 4\frac{1}{2})$

9. The midpoint of \overline{AB} is M(4,2). If the coordinates of A are (6, -4), what are the coordinates of B?

$$(1)$$
 $(1,-3)$

$$(3)$$
 $(5,-1)$

The coordinates of the vertices of triangles are given below. Which is a right triangle?

$$(1)$$
 $D(-8,-2)$, $E(-1,-5)$, $F(2,3)$

$$\chi$$
 (2) $A(5,-1)$, $B(3,5)$, $C(-2,-3)$

(3)
$$K(0,1), L(-3,-8), M(3,-5)$$

(4)
$$X(-7,2)$$
, $Y(-4,-3)$, $Z(2,0)$

$$mKH = \frac{-5-1}{3-0} = \frac{-6}{3}$$

$$m LM = \frac{-5 - (-8)}{3 - (-3)} = \frac{3}{6}$$

11. Which equation describes the line that is parallel to
$$y = -\frac{4}{3}x - 1$$
?

(1)
$$y = \frac{4}{3}x - 4$$

(1)
$$y = \frac{4}{3}x - 4$$
 (2) $y = \frac{3}{4}x + 1$

$$(3) \ \ y = -\frac{3}{4}x + 1$$

(3)
$$y = -\frac{3}{4}x + 1$$
 $\sqrt{(4)}$ $y = -\frac{4}{3}x$

Which of the following systems represent a pair of lines that are perpendicular to each other?

(1)
$$2x + 3y = 6$$

 $3x + 2y = 6$

(3)
$$2x + 3y = 6$$

 $-2x + 3y = 6$

$$(4) \quad 3x + 2y = 6 \\
 -3x + 2y = 6$$

13. Determine an equation of the line which is the perpendicular bisector of the segment whose endpoints are (-4, -6) and (-6, 7).

mdpt
$$\left(-\frac{4+-6}{2}, -\frac{6+7}{2}\right) = \left(-\frac{10}{2}, \frac{1}{2}\right) = \left(-5, \frac{1}{2}\right)$$

Slope $\frac{7-(-6)}{-6-(-4)} = \frac{13}{-2}$

$$Y - \frac{1}{2} = \frac{2}{13} (x+5)$$

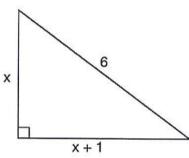
14. Write an equation of the straight line which is perpendicular to the line 2x - 3y = 5 at the point (4, 1).

$$-3y = -2x + 5$$

 $Y = \frac{2}{3}x - \frac{5}{3}$
 $m = \frac{2}{3}$
 $L_m = \frac{-3}{2}$

$$Y-1=\frac{-3}{2}(x-4)$$

15. Write an equation of the line parallel to 2x - 5y = 6 that passes through the point (1, -3).


$$Y+3 = \frac{2}{5}(x-1)$$

16. Write an equation of the straight line parallel to the line given by the equation 2x + 4y + 5 = 0 and passing through the origin.

17. Find, in radical form, the length of the line segment with endpoints whose coordinates are (-1, 4) and (3, -2).

$$(-1-3)^{2} \cdot (4-(-2)^{2}$$

 $(-4)^{2} \cdot (6)^{2}$
 $16 + 36$
 $\sqrt{52}$
 $4 \cdot 13$
 $2\sqrt{13}$

18. As shown in the accompanying diagram, the hypotenuse of the right triangle is 6 meters long. One leg is 1 meter longer than the other. Find the lengths of both legs of the triangle, to the nearest hundredth of a meter.

$$X^{2} + (X+1)^{2} = 6^{2}$$

$$X^{2} + X^{2} + 2X+1 = 36$$

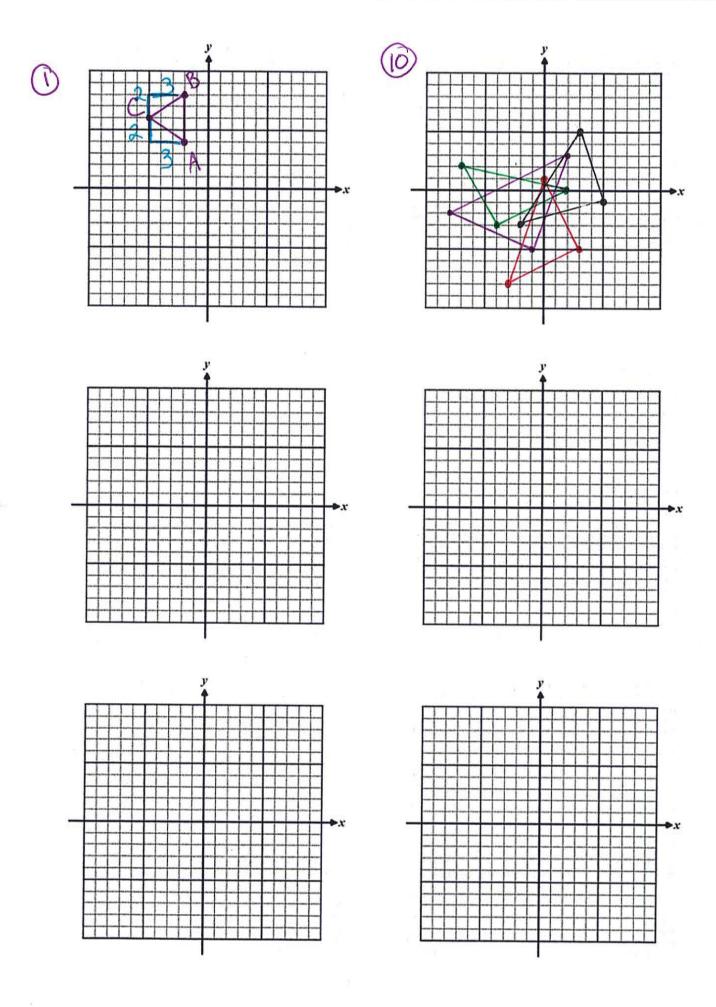
$$2x^{2} + 2X - 35 = 6$$

$$X = -(2) = \sqrt{(2)^{2} - 4(2)(-35)}$$

$$2(2)$$

$$X = -2 = \sqrt{284}$$

$$4 = 3.71$$


19. Given the triangle whose vertices are at A(3,3)2 B(6,2), and C(8,-2). What is the slope of the altitude to side AC?

$$m AC = \frac{-2-3}{8-3} = \frac{-5}{5} = -1$$

$$\lim_{x \to \infty} 2x = \frac{1}{5}$$

20. The endpoints of \overline{AB} are A(3, -4) and B(7, 2). Determine and state the length of \overline{AB} in radical form.

$$(-4-2)^{2}+(3-7)^{2}$$

 $(-6)^{2}+(-4)^{2}$
 $36+16$
 $\sqrt{52}$
 $4\cdot 13$
 $2\sqrt{13}$

