Coordinate Geometry - REVIEW

1. What is the slope of the line that passes through the points (2,3) and (-1,12)?

$$m = \frac{12-3}{1-2} = \frac{9}{-3} = -3$$

2. What is the length of \overline{AB} if the coordinates of the endpoints are A(2,3) and B(-1,12)? (simplest radical form)

$$(2-(-1))^{2}+(3-12)^{2}$$
 $\sqrt{90}$ $\sqrt{9}$ \sqrt

- 3. If A and B are the endpoints of the diameter of a circle, and the coordinates of the points are A(-5, -1) and B(3, 7), find the center of the circle. $\left(-\frac{5+3}{2}, -\frac{1+7}{2}\right) = \left(-\frac{2}{2}, \frac{6}{2}\right) = \left(-\frac{1}{3}\right)$
- 4. Write an equation of the line that satisfies the given conditions:
 - a. Parallel to y = -5x + 1, with y-intercept of 3.
 - b. Perpendicular to 3x + 2y = -7 and passing thru the point (-6, 5).
 - c. Goes through the points (2, 4) and (5, -1).
 - d. Has a slope of 4 and an x-intercept of -2. \times -intercept $\rightarrow \gamma$ -O
 - e. Goes through the points (4,3) and (4,-2)
 - f. Perpendicular to the line that goes through the points (-2, 8) and (-2, 2), and has a y-intercept of -4

a)
$$Y = -5x + 3$$

b) $3x + 2y = -7$
 $2y = -3x - 7$
 $Y = -3z$
 $3x + 2y = -7$
 $2x - 3z$
 $3x - 3z$

ercept of
$$-4$$

e) $-2-3 = -5 = No$
 $X = 4$

f) $M = \frac{2-8}{2-(1)} = \frac{-6}{0} = No$
 $A = 2 = 70$
 $A = 2 = 70$
 $A = 2 = 70$

5. Write the equation for the perpendicular bisectors of the line segments connecting each pair of points:

a.
$$C(3,-1),A(7,3)$$

b. $C(3,-1),T(1,3)$
c. $T(1,3),A(7,3)$
a) $\frac{3-(-1)}{7-3} = \frac{4}{4} = 1$
 $\frac{3+1}{7-3} = \frac{1+3}{2} = (2,1)$
 $\frac{3+1}{2} = \frac{1+3}{2} = \frac$

6. Two perpendicular lines intersect at (2, -1). If x - y = 3 is the equation of one of these lines, what is the equation of the other?

$$X-Y=3$$

 $-Y=-X+3$
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7
 -7

7. Given the sets of points in each part, determine whether the lines through these points are parallel, perpendicular, or neither.

a.
$$(2,0)$$
, $(0,4)$ and $(-1,3)$, $(-1,5)$

c.
$$(-5,2)$$
, $(7,0)$ and $(-6,-2)$, $(4,-4)$

b)
$$0-(-5)=\frac{5}{6-(-4)}=\frac{1}{10}=\frac{1}{2}$$

$$\frac{3-1}{4-5} = \frac{2}{-1}$$

c)
$$0-2 = -2 = -1$$

 $7-(-5) = 12 = 6$

$$\frac{-4-(-2)}{4-(-6)}=\frac{-2}{10}=\frac{-1}{5}$$

Neither