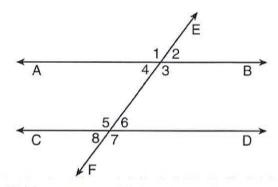

Name:

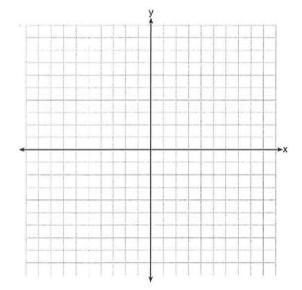
Date: __


In the accompanying diagram, line ℓ is parallel to line m, and line t is a transversal.

Which must be a true statement?

- (1) $m \angle 1 + m \angle 4 = 180$ (2) $m \angle 1 + m \angle 8 = 180$
- (3) $m \angle 3 + m \angle 6 = 180$ (4) $m \angle 2 + m \angle 5 = 180$

Transversal \overrightarrow{EF} intersects \overrightarrow{AB} and \overrightarrow{CD} , as shown in the diagram below.

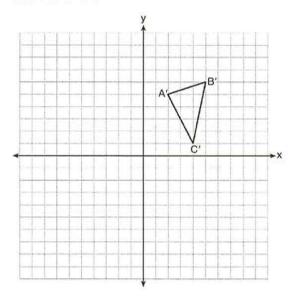


Which statement could always be used to prove $\overrightarrow{AB} \parallel \overrightarrow{CD}$?

- (1) ∠2 ≅ ∠4
- (2) ∠7 ≅ ∠8
- (3) ∠3 and ∠6 are supplementary
- (4) ∠1 and ∠5 are supplementary

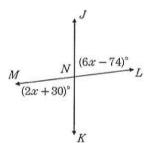
- 3. When two parallel lines are cut by a transversal, which angles are not always congruent?
 - (1) a pair of alternate interior angles
 - (2) a pair of alternate exterior angles
 - (3) two interior angles on the same side of the transversal
 - (4) two corresponding angles

4. Quadrilateral *MATH* has coordinates M(-6, -3), A(-1, -3), T(-2, -1), and H(-4, -1). The image of quadrilateral *MATH* after the composition $r_{x-axis} \circ T_{7,5}$ is quadrilateral M''A''T''H''. State and label the coordinates of M''A''T''H''.



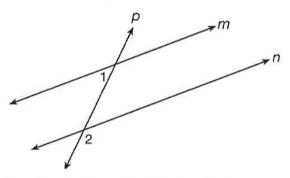
5. The graph below shows $\triangle A'B'C'$, the image of $\triangle ABC$ after it was reflected over the y-axis.

Graph and label $\triangle ABC$, the pre-image of $\triangle A'B'C'$.

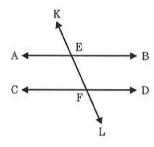

Graph and label $\triangle A''B''C''$, the image of $\triangle A'B'C'$ after it is reflected through the origin.

State a single transformation that will map $\triangle ABC$ onto $\triangle A''B''C''$.

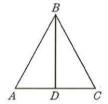
6. Under the transformation $(x, y) \rightarrow (2x, 2y)$, which Which figure has 120° rotational symmetry? property is not preserved? (1) rhombus (2) regular pentagon (1) distance (2) orientation (3) square (4) equilateral triangle (3) parallelism (4) angle measure If $\triangle ABC$ and its image, $\triangle A'B'C'$, are graphed on a set of axes, $\triangle ABC \cong \triangle A'B'C'$ under each transformation except (1) D_2 (3) $r_{y=x}$ 10. If $\triangle A'B'C'$ is the image of $\triangle ABC$, under which transformation will the triangles not be congruent? (1) reflection over the x-axis (2) translation to the left 5 and down 4 (3) dilation centered at the origin with scale factor 2 (4) rotation of 270° counterclockwise about the Which figure has 60° rotational symmetry? 8. (1) square (2) equilateral triangle (3) regular octagon (4) regular hexagon


- 11. After a reflection over a line, $\triangle A'B'C$ is the image of $\triangle ABC$. Explain why triangle ABC is congruent to triangle A'B'C'.
- 13. In the accompanying diagram, lines \overrightarrow{JK} and \overrightarrow{LM} intersect at N, $m \angle JNL = 6x 74$, and $m \angle MNK = 2x + 30$. What is the value of x?

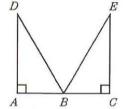
12. In the accompanying diagram, \overrightarrow{AB} and \overrightarrow{CD} intersect at *E*. Angles *AEC* and *DEB* measure 2x - 6 and 6x - 50, respectively. Find the value of *x*.


14. As shown in the diagram below, lines m and n are cut by transversal p.

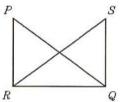
If $m \angle 1 = 4x + 14$ and $m \angle 2 = 8x + 10$, lines m and n are parallel when x equals


- (1) 1
- (2) 6
- (3) 13
- (4) 17

15. In the accompanying diagram, \overrightarrow{AB} is parallel to \overrightarrow{CD} ; transversal \overrightarrow{KL} intersects \overrightarrow{AB} and \overrightarrow{CD} at E and F, respectively; $m \angle BEF = 3x + 40$; and $m \angle DFL = 8x - 10$. Find $m \angle CFL$.

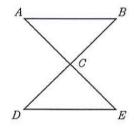


16. Given: $\triangle ABC$, \overline{BD} is both the median and the altitude of \overline{AC} .

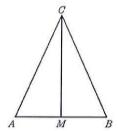

Prove: $\overline{BA} \cong \overline{BC}$

- 17. In the accompanying diagram, B is the midpoint of \overline{AC} , $\overline{DA} \perp \overline{AC}$, $\overline{EC} \perp \overline{AC}$, and $\overline{DB} \cong \overline{EB}$. Which method of proof may be used to prove $\triangle DAB \cong \triangle ECB$?
 - (1) $SAS \cong SAS$
 - (2) $ASA \cong ASA$
 - (3) $HL \cong HL$
 - (4) $AAS \cong AAS$

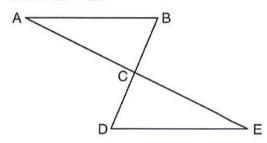
- 18. In the accompanying diagram, $\overline{PR} \cong \overline{SQ}$, $\overline{PR} \perp \overline{RQ}$, and $\overline{SQ} \perp \overline{RQ}$. Which statement can be used to prove that $\triangle PQR \cong \triangle SRQ$?
 - (1) $AAS \cong AAS$
 - (2) $SAS \cong SAS$
 - (3) $HL \cong HL$
 - (4) SSS ≅ SSS


19. In the accompanying diagram, \overrightarrow{ACE} , \overrightarrow{BCD} , \overrightarrow{AB} , and \overrightarrow{DE} , $\angle A \cong \angle E$, and C is the midpoint of \overrightarrow{AE} . Which theorem justifies $\triangle ABC \cong \triangle EDC$?

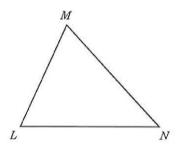
(3)
$$ASA \cong ASA$$


(4)
$$SSA \cong SSA$$

20. In the accompanying diagram of isosceles triangle ABC, $\angle ACB$ is the vertex angle, $\overline{CM} \perp \overline{AB}$, and M is the midpoint of \overline{AB} .

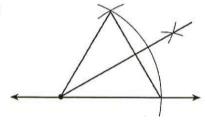

Which statement can *not* be used to justify $\triangle ACM \cong \triangle BCM$?

- (2) $AAS \cong AAS$
- (3) SSS ≅ SSS
- (4) $AAA \cong AAA$

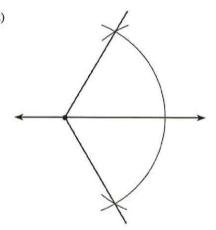


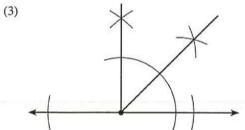
21. Given: $\triangle ABC$ and $\triangle EDC$, C is the midpoint of \overline{BD} and \overline{AE}

Prove: AB = ED

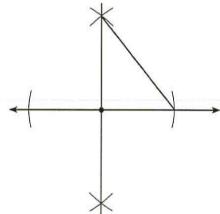


22. Construct the altitude of $\triangle LMN$ from M to \overline{LN} .

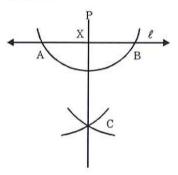



23. Which diagram shows the construction of a 45° angle?

(1)

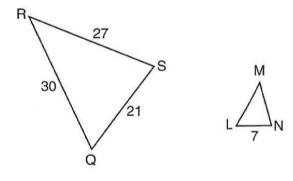


(2)



(4)

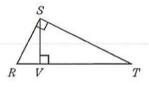
24. The diagram shows the construction of dropping perpendicular \overline{PX} from point P to line ℓ . The arc drawn from point P intersects line ℓ at A and B, and the arcs drawn from points A and B intersect \overline{PX} at C.

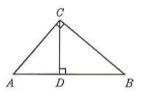


Which statement is *not* always true about this construction?

- (1) PA = PB
- (2) AX = BX
- (3) PX = CX
- (4) AC = BC

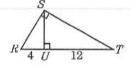
- 25. To locate a point equidistant from the vertices of a triangle, construct
 - (1) the perpendicular bisectors of the sides
 - (2) the angle bisectors
 - (3) the altitudes
 - (4) the medians


26. In the accompanying diagram, $\triangle QRS$ is similar to $\triangle LMN$, RQ = 30, QS = 21, SR = 27, and LN = 7. What is the length of \overline{ML} ?


- 27. If two angles of one triangle are congruent, respectively, to two angles of another triangle, then these triangles must be
 - (1) isosceles
- (2) similar
- (3) congruent
- (4) equilateral

- 28. Which is not a property of all similar triangles?
 - (1) The corresponding angles are congruent.
 - (2) The corresponding sides are congruent.
 - (3) The perimeters are in the same ratio as the corresponding sides.
 - (4) The altitudes are in the same ratio as the corresponding sides.

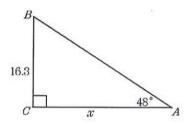
29. In the accompanying diagram, \overline{SV} is the altitude to hypotenuse \overline{RT} of right triangle *RST*. If RV = 3 and VT = 12, find the length of \overline{SV} .


30. In right triangle ABC, $m \angle C = 90^{\circ}$ and altitude \overline{CD} is drawn to hypotenuse \overline{AB} . If AD = 4 and DB = 5, find AC.

31. In the accompanying diagram, $\triangle RST$ is a right triangle, \overline{SU} is the altitude to hypotenuse \overline{RT} , RU = 4, and UT = 12.

What is the length of \overline{RS} ?

- (1) 8
- (2) √48
- (3) √160
- (4) 24



- 32. In the accompanying diagram of right triangle ABC, $\angle C$ is a right angle. Which equation is valid for $\triangle ABC$?
 - (1) $\cos A = \frac{c}{b}$ (2) $\tan A = \frac{b}{a}$
 - (3) $\sin A = \frac{a}{c} \quad (4) \quad \cos B = \frac{a}{b}$

33. In the accompanying diagram of right triangle ABC, $m \angle C = 90$, $m \angle BAC = 48$, AC = x, and CB = 16.3.

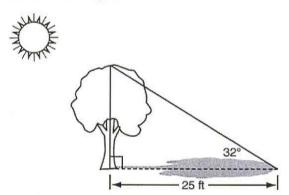
Which equation could be used to find the length of \overline{AC} ?



- (3) $\tan 48 = \frac{16.3}{x}$

- 34. Which value of x satisfies the equation $\sin 40^{\circ} = \cos x$?
 - (1) 20°
- (3) 50°
- (4) 80°

35. If $\cos(2x-25)^\circ = \sin 55^\circ$, find the value of x.


36. An 8-foot rope is tied from the top of a pole to a stake in the ground, as shown in the diagram below.

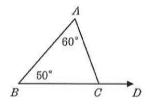
If the rope forms a 57° angle with the ground, what is the height of the pole, to the nearest tenth of a foot?

- (1) 4.4
- (2) 6.7
- (3) 9.5
- (4) 12.3

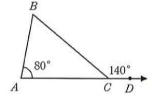
37. A tree casts a 25-foot shadow on a sunny day, as shown in the diagram below.

If the angle of elevation from the tip of the shadow to the top of the tree is 32°, what is the height of the tree to the nearest tenth of a foot?

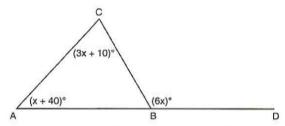
- (1) 13.2
- (2) 15.6
- (3) 21.2
- (4) 40.0


- 38. The expression $\sqrt{27} + \sqrt{12}$ is equal to
 - (1) $13\sqrt{3}$ (2) $5\sqrt{3}$ (3) $5\sqrt{6}$ (4) $\sqrt{39}$

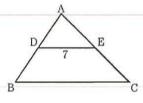
- 39. The expression $\sqrt{200}$ is equivalent to
 - (1) 25√8
- (2) $100\sqrt{2}$
- (3) $2\sqrt{10}$
- (4) $10\sqrt{2}$


- 40. Which set of numbers represents the lengths of the sides of a right triangle?
 - (1) {7, 8, 9}
- (2) {7, 8, 10}
- (3) {6, 8, 10}
- (4) $\{6, 8, 9\}$

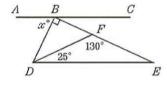
- 41. Which set of numbers could not represent the lengths of the sides of a right triangle?
 - (1) $\{3,4,5\}$
- (2) {6, 9, 12}
- (3) {5, 12, 13}
- (4) {8, 15, 17}


42. In the accompanying diagram, $\angle ACD$ is an exterior angle of $\triangle ABC$. If $m \angle A = 60$ and $m \angle B = 50$, find $m \angle ACD$.

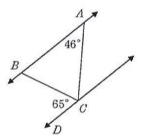
43. In the diagram shown, $m \angle BCD = 140$ and $m \angle BAC = 80$. Find $m \angle ABC$.


44. In the diagram of $\triangle ABC$ below, \overline{AB} is extended to point D.

If $m \angle CAB = x + 40$, $m \angle ACB = 3x + 10$, and $m \angle CBD = 6x$, what is $m \angle CAB$?


- (1) 13
- (2) 25
- (3) 53
- (4) 65

45. In the accompanying diagram of scalene triangle $\triangle ABC$, D and E are the midpoints of \overline{AB} and \overline{AC} , respectively, and $\overline{DE} = 7$. Find the length of \overline{BC}



46. Points R, S, and T are the midpoints of the sides of a triangle whose sides have lengths 14, 18, and 20. Find the perimeter of $\triangle RST$.

47. In the accompanying diagram, $\overline{ABC} \parallel \overline{DE}$, $m \angle FDE = 25$, $m \angle DFE = 130$, and $m \angle ABD = x$. What is the value of x?

48. In the accompanying diagram, \overrightarrow{AB} is a parallel to \overrightarrow{CD} , $m \angle BAC = 46$, and $m \angle BCD = 65$. Find the measure of $\angle ACB$.

51. In $\triangle KID$, $m \angle K = 40$ and $m \angle D = 80$. Which side of $\triangle KID$ is the shortest?

50. If the measures of the angles of a triangle are

triangle must be

(1) isosceles

(3) right

represented by x + 30, 4x + 30, and 10x - 30, the

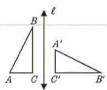
(2) obtuse

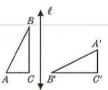
(4) scalene

- 49. If the measure of the angles of a triangle are represented by 2x, 4x, and 6x, then the triangle is
 - (1) right
- (2) obtuse
- (3) acute
- (4) equiangular
- 52. In $\triangle PQR$, $m \angle P = 51$ and $m \angle Q = 57$. Which expression is true?
 - (1) QR > PQ
- (2) PR > PQ
- (3) PQ > QR

- 53. If M is the midpoint of \overline{AB} , then which statement is false?
 - (1) $\frac{AB}{2} = MB$ (2) AM = MB

 - (3) AB MB = AM (4) AM + AB = MB


54. In which figure is $\triangle A'B'C'$ a reflection of $\triangle ABC$ in line ℓ ?



(2)

55. What is the image of point (4,5) after a reflection in the y-axis?

- 56. The coordinates of any point (x, y) after a reflection in the x-axis can always be represented
- (2) (-x, y)
- (4) (-x, -y)